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Abstract. The impact of a thermoelastic rod with a heat-insulated lateral surface against a rigid heated barrier is
considered. The heat exchange between the rod and the wall occurs at one of its ends contacting with the wall,
while the other end is heat-insulated and free from external forces. The behaviour of the rod during the impact
process is described by the Green-Naghdy theory which allows one to take finite speed of heat propagation into
account, neglecting therewith thermal relaxation. The Laplace integral transform with the subsequent expansion
of the found images in terms of the natural functions of the problem is used as a method of solution, which is
found in explicit exact closed form. The analytical time-dependence of displacements, stresses, and temperature at
each rod particle is obtained. The emphasis is on the analysis of the contact stress, the temperature of the colliding
bodies during their contact interaction, and on the detection of the duration of contact of the rod with the rigid
wall. It is shown that the contact time essentially depends on the relationship between the mechanical and thermal
values.
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1. Introduction

Lord and Shulman [1] deduced the governing equations for extended thermoelasticity (ETE)
based on the Maxwell–Cattaneo–Vernotte law

q = −λθ,x −τ q̇, (1)

where q is the heat-flux vector, θ = T −T0 is the relative temperature of a thermoelastic body,
T is the temperature, T0 is the temperature of the body in a natural state, λ > 0 is the thermal
conductivity of the material, τ > 0 is the relaxation time, an index after a comma denotes a
derivative with respect to the x-coordinate, and an overdot is used for time differentiation.

The heat-transport equation based on the conduction law (1) is of hyperbolic type and
predicts a finite speed for heat propagation, what has been experimentally verified for many
liquid and solid materials (see review articles by Chandrasekharaiah [2, 3] and Joseph and
Preziosi [4]).

The law of heat conduction (1) has two limiting cases, namely for τ = 0 and τ → ∞. The
former corresponds to the classical Fourier law

q = −λθ,x (2)

which results in an infinite speed for heat propagation what is physically unrealistic, particu-
larly for initial-value problems and very short time intervals.

The second extreme limiting case (τ → ∞) governs the conduction law

q̇ = −κθ,x , κ = lim
τ→∞

λ

τ
(3)
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which admits undamped thermal waves propagating with a finite speed.
The governing equations of thermoelasticity based on the heat-conduction law (3) were

derived and justified by Green and Naghdy in 1993 [5]. This new model of the thermoelasticity
theory was defined as thermoelasticity without energy dissipation (hereafter referred to as
TEWOED), since the internal rate of production of entropy has been put equal to zero.

If the first limiting case (τ = 0) of ETE, corresponding to the conventional thermoelasticity
(CTE), is applicable in situations where τ is very small compared to the time-scales involved,
then the second limiting case (τ → ∞) of ETE, corresponding to TEWOED, is applicable in
problems where τ is very large when compared to the time-scales. Rigid materials of this kind
have already been identified [6].

Chandrasekharaiah in his state-of-the-art article [3] analyzing different models of the hy-
perbolic thermoelasticity has noted that, from a theoretical point of view, TEWOED is inter-
esting in its own right, even when it is not viewed as a limiting case of ETE. In fact, TEWOED
has been formulated independently of ETE; based on firm thermodynamical grounds, it can
rightly be used as any other systematically developed thermomechanical theory. Green and
Naghdy [5] say that this theory ‘is perhaps a more natural candidate for its identification as
thermoelasticity’ than CTE.

TEWOED has immediately attracted considerable interest of researchers. A survey of the
literature concerned with the theory can be found in [3]. Thus, in the context of TEWOED, free
plane harmonic waves [7] and volume cylindrical/spherical waves [8–10] in an unbounded
thermoelastic body, boundary-initiated waves in a half-space under different boundary loads
[3, 11, 12], and Rayleigh waves in a half-space with stress-free and isothermal/adiabatic plane
boundary [13] have been studied. It should be noted that in all these problems the explicit
closed-form solutions have been constructed and analyzed.

In the present paper, the practically important problem about the collision of two solid
bodies, one of which is considerably more rigid than the other, is solved by use of the Green-
Naghdy theory [5]. The problem about the impact of a thermoelastic rod against a heated rigid
wall fits naturally into the theory of TEWOED, since the process of contact interaction occurs
so rapidly that the two bodies cease to be in contact with each other well before the thermal
relaxation has had an opportunity to develop.

It should be mentioned that this boundary-value problem was considered previously in the
context of ETE using the heat-conduction law (1) without reference to and with due account
for the coupling of the strain and temperature fields in [14] and [15], respectively. The analysis
of the solutions constructed in [14, 15] is amenable only to numerical treatment, whereas the
application of the theory of TEWOED allows one to obtain the explicit exact solutions in
closed form for the problem considered, as well as to analyze the influence of the thermal and
mechanical parameters on the duration of contact of the rod with the wall.

2. Problem formulation

Let us consider a rod of length l with a heat-insulated lateral surface approaching a rigid
barrier with the velocity v0 (Figure 1). The wall temperature is T1. Impact occurs at t = 0.
The x-coordinate directed along the rod’s axis is measured from the rod’s section contacting
with the wall. During impact, heat exchange between the rod and wall takes place on one end
of the rod (x = 0); another end (x = l) is heat-insulated and free from external forces.
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Figure 1. A scheme of a thermoelastic rod interaction with a rigid wall: 1) in the case t2 > t1 for z = t1/t2 = 0·6
at the instants of time (a) t = t1/3, (b) t = 0·75t1, (c) t = 0·9t1, and (d) t = t1/2 + t2/2 = 1·335t1; 2) in the case
t1 > t2 for z = 1·4 at the instants of time (a) t = 0·3t2, (b) t = 0·6t2, (c) t = 0·8t2, and (d) t = t2.
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Figure 1. Continued.

Assuming that heat propagates with a finite speed and using the TEWOED theory, we
come to the following problem: to find the solution of the set of equations

θ̈ − a2θ,xx +rγ ü,x = 0, (4a)

ü− c2u,xx +c2αθ,x = 0 (4b)

subjected to the initial and boundary conditions

u = 0, u̇ = −v0, θ = 0, θ̇ = 0 (t = 0), (5)
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u = 0, −q = h(θ −�1) (x = 0), (6a)

σ = Eu,x −γ θ = 0, q = 0 (x = l), (6b)

where θ = T − T0 is the relative temperature of the rod, T0 is the temperature of the rod in
a natural state, a = √

κ/cε is the thermal wave velocity, r = T0c
−1
ε , cε is the specific heat

at constant strain, γ = Eα, E is the Young’s modulus, α is the coefficient of linear thermal
expansion, u is the displacement, c = √

E/ρ is the elastic wave velocity, ρ is the density, q is
the quantity of heat flowing through a rod cross-section area unit per a time unit, σ is the stress,
h is the coefficient of convective heat exchange from the wall to the rod, and �1 = T1 − T0.

At the moment of impact two shock waves originate at the contacting section of the rod,
which then propagate along the rod with certain velocities c1 and c2 (Figure 1a). One of
these waves will be called ‘quasielastic’ and denoted by qE, and the other will be termed
‘quasithermal’ wave and denoted by qT . Each of these waves has a mixed character, i.e. it
possesses both elastic and thermal features; in so doing the elastic properties dominate over
the qE-wave and the thermal features dominate over the qT -wave. In the case of ignoring the
coupling of strain and temperature fields, these waves go over into pure elastic waves and pure
thermal waves, respectively.

Assume that the qT -wave is faster than the qE-wave (see the first example in Figure 1).
Then first the qT -wave reaches the free end of the rod, and two reflected waves appear at a time
(Figure 1b), namely: the qTqT -wave (the reflected quasithermal wave from the incident qT -
wave) and the qEqT -wave (the reflected quasielastic wave from the incident qT -wave). When
the qE-wave comes up closer to the free end of the rod, two additional reflected waves appear
(Figure 1c): the qTqE-wave (the reflected quasithermal wave from the incident qE-wave) and
the qEqE-wave (the reflected quasielastic wave from the incident qE-wave).

First, the reflected qTqT -wave comes to the contact region (the time of its arrival is t1 =
2lc−1

1 ), then at once two waves, the qTqE- and qEqT -waves, reach the contact zone (the time
of their arrival is equal to lc−1

1 + lc−1
2 ), and finally, the qEqE-wave arrives at the contact region

(the time of its arrival is t2 = 2lc−1
2 ). Each of these waves changes the contact stress σ (0, t)

abruptly, which may lead to the rebound of the rod from the rigid wall, if σ (0, t) changes
a sign. Thus, the contact conditions (6a) may break down at one of the enumerated instants
of the time, and hence the problem formulation must include the condition σ (0, t) ≤ 0 (the
condition of loading of the section being in contact) which is valid only on the restricted time
interval.

When the qE-wave is faster than the qT -wave (see the second example in Figure 1), then
first the qE-wave reaches the free end of the rod generating two reflected waves: the qEqE-
and qTqE-waves (Figure 1f). When the off-loading qEqE-wave reaches the place of contact
(Figure 1h), the contact stress changes abruptly to zero, resulting in the rod’s rebound from
the wall.

3. Method of solution

As a method of solution of the problem under consideration we shall use the Laplace-integral-
transform method in combination with the expansion of the desired functions in terms of
eigenfunctions. Applying the Laplace transformation to the set of Equations (4) and consider-
ing the initial and boundary conditions (5) and (6), we have

p2θ̄ − a2θ̄ ,xx +εα−1p2ū,x = 0, (7a)
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p2ū− c2ū,xx +c2αθ̄,x = −v0, (7b)

ū = 0, κ
1

p
θ̄,x = h

(
θ̄ − �1

p

)
(x = 0), (8a)

Eū,x −γ θ̄ = 0,
1

p
θ̄,x = 0 (x = l), (8b)

where a bar over a function denotes the Laplace transform of the corresponding function, p
is the complex parameter of the Laplace transformation, and ε = rαγ is the dimensionless
parameter characterizing coupling of strain and temperature fields [16].

Let us seek the solution of the set of Equations (7) satisfying the boundary conditions (8)
in the form of the superposition of four particular solutions of the following form:

ū1 =
∞∑
n=1

M̄n cos lnx, θ̄1 =
∞∑
n=1

χ̄n sin lnx, (9a)

ū2 =
∞∑
n=1

Ḡn cos lnx + ḡ
x

E
, θ̄2 =

∞∑
n=1

ψ̄n sin lnx, (9b)

ū3 =
∞∑
n=1

$̄n cos lnx + f̄ , θ̄3 =
∞∑
n=1

ϕ̄n sin lnx, (9c)

ū4 =
∞∑
n=1

N̄n cos lnx, θ̄4 =
∞∑
n=1

c̄n sin lnx + s̄, (9d)

where M̄n, Ḡn, $̄n, N̄n, χ̄n, ψ̄n, ϕ̄n, c̄n, ḡ, f̄ , and s̄ are yet unknown functions of the
variable p to be determined from the set of Equations (7) and the boundary conditions (8),
and ln = (2n− 1)π(2l)−1.

The particular solution (9a) is the solution of the nonhomogeneous system of Equations (7),
but other particular solutions (9b)–(9d) are the solutions of the corresponding homogeneous
set of equations. Note that under such a choice of solution the second condition from (8b) is
fulfilled automatically.

Substituting sequentially the expressions (9a)–(9d) in the set of Equations (7), and using
the conditions of orthogonality for sin lnx and cos lnx on the segment from 0 to l, we find

M̄n = − 2v0(−1)n−1

lln

p2 + a2l2n

f (p)
, χ̄n = −ε 2v0(−1)n−1

lα

p2

f (p)
, (10a)

Ḡn = − 2

Ell2n

{[
lln(−1)n−1 − 1

]
(p2 + a2l2n)− εc2l2n

}
p2ḡ

f (p)
,

ψ̄n = −ε 2

Eαl

[l(−1)n−1p2 + c2ln]p2ḡ

f (p)
,

(10b)

$̄n = − 2(−1)n−1

lln

p2(p2 + a2l2n)f̄

f (p)
, ϕ̄n = −ε 2(−1)n−1

lα

p4f̄

f (p)
, (10c)
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N̄n = 2αc2

l

p2s̄

f (p)
, c̄n = − 2

lln

p2(p2 + c2l2n)s̄

f (p)
, (10d)

where f (p) = (p2 + c2l2n)(p
2 + a2l2n)+ εc2l2np

2.
Going in the expressions (10) from images to pre-images, we obtain

Mn(t) = − 2v0(−1)n−1

lln(*2
n − ω2

n)

(
*2
n − a2l2n

*n

sin*nt − ω2
n − a2l2n

ωn

sinωnt

)
,

χn(t) = −ε 2v0(−1)n−1

lα(*2
n − ω2

n)
(*n sin*nt − ωn sinωnt) ,

(11a)

Gn(t) = 2[lln(−1)n−1 − 1]
Ell2n

{
−g(t)+ 1

*2
n − ω2

n

∫ t

0
g(t ′)

× [
*n(*

2
n − a2l2n) sin*n(t − t ′)

− ωn(ω
2
n − a2l2n) sinωn(t − t ′)

]
dt ′

} + ε
2c2l2n

Ell2n(*
2
n − ω2

n)

×
∫ t

0
g(t ′)

[
*n sin*n(t − t ′)− ωn sinωn(t − t ′)

]
dt ′,

ψn(t) = ε
2(−1)n−1

Eα

{
−g(t)+ 1

*2
n − ω2

n

∫ t

0
g(t ′)

× [
*3
n sin*n(t − t ′)− ω3

n sinωn(t − t ′)
]
dt ′

}

−ε 2c2l2n

Eαlln(*
2
n − ω2

n)
×

∫ t

0
g(t ′)

[
*n sin*n(t − t ′)− ωn sinωn(t − t ′)

]
dt ′,

(11b)

$n(t) = 2(−1)n−1

lln

{
−f (t)+ 1

*2
n − ω2

n

∫ t

0
f (t ′)

× [
*n(*

2
n − a2l2n) sin*n(t − t ′)− ωn(ω

2
n − a2l2n) sinωn(t − t ′)

]
dt ′

}

ϕn(t) = ε
2(−1)n−1

lα

{
−f (t)+ 1

*2
n − ω2

n

∫ t

0
f (t ′)

× [
*3
n sin*n(t − t ′)− ω3

n sinωn(t − t ′)
]

dt ′
}
,

(11c)

Nn(t) = 2αc2

l(*2
n − ω2

n)

∫ t

0
s(t ′)

[
*n sin*n(t − t ′)− ωn sinωn(t − t ′)

]
dt ′,

cn(t) = 2

lln

{
−s(t) + 1

*2
n − ω2

n

∫ t

0
s(t ′)

[
*n(*

2
n − c2l2n) sin*n(t − t ′)

− ωn(ω
2
n − c2l2n) sinωn(t − t ′)

]
dt ′

}
,

(11d)
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where p2 = −ω2
n and p2 = −*2

n are the roots of the characteristic equation f (p) = 0,
ωn = ln2lt−1

1 , *n = ln2lt−1
2 , t1 = 2lc−1

1 , t2 = 2lc−1
2 , and the velocities of the qT− and qE−

waves are defined from

c2
1,2 = a2 + c2(1 + ε)

2
± 1

2

√
(a2 − c2)2 + c2ε[2a2 + c2(2 + ε)]. (12)

Writing the desired solution of the set of Equations (7) in the form of the superposition of
the particular solutions (9)

ū =
4∑
i=1

ūi , θ̄ =
4∑
i=1

θ̄i , (13)

and substituting (13) in the boundary conditions (8), we have

∞∑
n=1

(
M̄n + Ḡn + $̄n + N̄n

) + f̄ = 0, (14a)

κ

p

∞∑
n=1

ln
(
χ̄n + ψ̄n + ϕ̄n + c̄n

) = h

(
s̄ − �1

p

)
, (14b)

E

∞∑
n=1

ln(−1)n−1
(
M̄n + Ḡn + $̄n + N̄n

) − ḡ,

+γ
∞∑
n=1

(−1)n−1 (
χ̄n + ψ̄n + ϕ̄n + c̄n

) + γ s̄ = 0.

(14c)

Going in Equations (14) from images to pre-images, we obtain the set of three equations
for determining the three unknown functions: f (t), s(t), and g(t)

−2v0

l

∞∑
n=1

(−1)n−1

ln(*2
n − ω2

n)

(
*2
n − a2l2n

*n

sin*nt − ω2
n − a2l2n

ωn

sinωnt

)

+
∞∑
n=1

2[lln(−1)n−1 − 1]
Ell2n(*

2
n − ω2

n)

∫ t

0
g(t ′)

[
*n(*

2
n − a2l2n) sin*n(t − t ′)

− ωn(ω
2
n − a2l2n) sinωn(t − t ′)

]
dt ′ + ε

2c2

El

∞∑
n=1

1

*2
n − ω2

n

×
∫ t

0
g(t ′)

[
*n sin*n(t − t ′)− ωn sinωn(t − t ′)

]
dt ′ + 2

l

∞∑
n=1

(−1)n−1

ln(*2
n − ω2

n)

∫ t

0
f (t ′)

× [
*n(*

2
n − a2l2n) sin*n(t − t ′)− ωn(ω

2
n − a2l2n) sinωn(t − t ′)

]
dt ′

+2αc2

l

∞∑
n=1

1

*2
n − ω2

n

∫ t

0
s(t ′)

[
*n sin*n(t − t ′)− ωn sinωn(t − t ′)

]
dt ′ = 0,

(15a)
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−hlγ

2κ
[s(t) −�1] + εv0E

∞∑
n=1

ln(−1)n−1

*2
n − ω2

n

[cos*nt − cosωnt]

+εc2
∞∑
n=1

l2n

*2
n − ω2

n

∫ t

0
g(t ′)

[
cos*n(t − t ′)− cosωn(t − t ′)

]
dt ′

−ε
∞∑
n=1

lln(−1)n−1

*2
n − ω2

n

∫ t

0
g(t ′)

[
*2
n cos*n(t − t ′)− ω2

n cosωn(t − t ′)
]

dt ′

−εE
∞∑
n=1

ln(−1)n−1

*2
n − ω2

n

∫ t

0
f (t ′)

[
*2
n cos*n(t − t ′)− ω2

n cosωn(t − t ′)
]

dt ′

−
∞∑
n=1

γ

*2
n − ω2

n

∫ t

0
s(t ′)

[
(*2

n − c2l2n) cos*n(t − t ′) − (ω2
n − c2l2n) cosωn(t − t ′)

]
dt ′,

(15b)

g(t) = −2v0E

l

∞∑
n=1

1

*2
n − ω2

n

(
*2
n − a2l2n

*n

sin*nt − ω2
n − a2l2n

ωn

sinωnt

)

+
∞∑
n=1

2[(−1)n−1 − lln]
lln(*2

n − ω2
n)

∫ t

0
ġ(t ′)

[
(*2

n − a2l2n) cos*n(t − t ′)

− (ω2
n − a2l2n) cosωn(t − t ′)

]
dt ′ −

∞∑
n=1

2E

l(*2
n − ω2

n)

∫ t

0
ḟ (t ′)

× [
(*2

n(1 + ε)− a2l2n) cos*n(t − t ′) − (ω2
n(1 + ε)− a2l2n) cosωn(t − t ′)

]
dt ′

−ε 2v0E

l

∞∑
n=1

1

*2
n − ω2

n

(*n sin*nt − ωn sinωnt)

−ε
∞∑
n=1

2

*2
n − ω2

n

∫ t

0
ġ(t ′)

[
*2
n cos*n(t − t ′)− ω2

n cosωn(t − t ′)
]

dt ′

+
∞∑
n=1

2γ (−1)n−1

lln(*2
n − ω2

n)

∫ t

0
s(t ′)

[
*3
n sin*n(t − t ′)− ω3

n sinωn(t − t ′)
]

dt ′.

(15c)

3.1. THE CASE t2 > t1

First we consider the more interesting case when the quasithermal wave is faster than the
quasilongitudinal wave, i.e. t2 > t1 (see the first example in Figure 1). Then, with due account
for the Fourier series presented in Appendix A, the set of Equations (15) gives

γ s(t) = 1

/

{
�1γ d1 + ε v0E

κ

hc1c2

}
, (0 < t < t1), (16a)
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γ s(t) = 1

/

{
�1γ d1 − ε v0E

κ

hc1c2

+ 2d1κ

hc1(c
2
2 − c2

1)

[
εc2g(t − t1)+ (c2 − c2

1)γ s(t − t1)
]

+ε κ

hc2(c
2
2 − c2

1)

[
(c2 − c2

2)g(t − t1)− c2γ s(t − t1)
]

−ε 2Eκ

hc1c2(c
2
2 − c2

1)

[
(c2

2 − a2)ḟ (t − t2/2) − (c2
1 − a2)ḟ (t − t1/2)

]

− ε
2Ed1κ

h(c2
2 − c2

1)

[
ḟ (t − t2/2)− ḟ (t − t1/2)

]}
(t1 < t < t2),

(16b)

γ s(t) = 1

/

{
�1γ d1 − ε

Eκ

hc1c2

(
v0 + 2ḟ (t − t2/2)

)

+ ε d1d2g(t − t1)+ d2(ε + 2d2
1 )γ s(t − t1)

}
, (t2 < t <

3

2
t1),

(16c)

g(t) = 1

/

{
�1γ − v0E(1 + d1d2)

c1 + c2

c2

}
, (0 < t < t1), (17a)

g(t) = 1

/

{
�1γ + v0E(1 + d1d2)

c1 + c2

c2

+ 2κ

hc1(c
2
2 − c2

1)

[
εc2g(t − t1)+ (c2 − c2

1)γ s(t − t1)
]

−c1(1 + d1d2)

c2(c2 − c1)

[
(c2 − c2

2)g(t − t1)− c2γ s(t − t1)
]

+2E(1 + d1d2)

c2(c2 − c1)

[
(c2

2 − a2)ḟ (t − t2/2)− (c2
1 − a2)ḟ (t − t1/2)

]

− ε
2Eκ

h(c2
2 − c2

1)

[
ḟ (t − t2/2)− ḟ (t − t1/2)

]}
(t1 < t < t2),

(17b)

g(t) = 1

/

{
�1γ + E(1 + d1d2)

c1 + c2

c2

(
v0 + 2ḟ (t − t2/2)

)
+(1 + d1d2) (d1g(t − t1)− γ s(t − t1))

+d2 (εg(t − t1)+ d1γ s(t − t1))
}
, (t2 < t <

3

2
t1),

(17c)

ḟ (t) = −v0, (0 < t <
1

2
t1), (18a)

ḟ (t) = −v0 + (c2
1 − a2)g(t − t1/2)− 2c2

1γ s(t − t1/2)

E(c2 − c1)d3
, (

1

2
t1 < t <

1

2
t2), (18b)
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ḟ (t) = −v0 − c2 + c1

Ed3

[
g(t)− 2γ s(t − t1/2)

]
, (

1

2
t2 < t < t1), (18c)

where

/ = ε d2 + d1(1 + d1d2),

d1 = 1 + c1c2

c2
, d2 = κc2

hc1c2(c1 + c2)
, d3 = d1 + ε.

Further it will be shown that the duration of contact of the rod with the wall cannot exceed
the value of t2. Because of this, there is no point in extending the functions s(t) and g(t)

beyond the time interval t = 3
2 t1.

The formulas (16)–(18) define the functions ḟ (t), s(t), and, g(t) and together with the
formulas (11), give us the solution of the problem under consideration. This solution is valid
until the rod is in contact with the wall, i.e. as long as the contact stress σ (0, t) < 0.

To determine the contact time, let us investigate the time-dependence of the contact stress.
For this purpose, write the contact stress in the Laplace domain

σ̄ (0, p) = Eū,x (0, p)− γ θ̄(0, p) = ḡ − γ s̄. (19)

Going in the formula (19) from the image to pre-image with due account for (16)–(18),
we have

σ (0, t) = −E

/

{
α�1

c1c2

c2
+ v0(c1 + c2)

c2
(1 + d2d3)

}
< 0, (0 < t < t1), (20a)

σ (0, t) = 1

/

{
−γ�1

c1c2

c2
− v0E(c1 + c2)

c2
(1 + d2d3)

−c1(1 + d2d3)

c2(c2 − c1)

[
(c2 − c2

2)g(t − t1)− c2γ s(t − t1)
]

− 2c2κ

c2(c2
2 − c2

1)h

[
εc2g(t − t1)+ (c2 − c2

1)γ s(t − t1)
]

− 2

c2d3(c2 − c1)2

(
c2

1 − a2 + ε
c1c2κ

(c2 + c1)h

)

× [
(c2

1 − a2)g(t − t1)− 2c2
1γ s(t − t1)

]}
,

(t1 < t <
1

2
t1 + 1

2
t2),

(20b)
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σ (0, t) = 1

/

{
−γ�1

c1c2

c2
+ v0E(c1 + c2)

c2
(1 + d2d3)

+2E(1 + d2d3)

c2(c2 − c1)

[
(c2

2 − a2)ḟ (t − t2/2)− (c2
1 − a2)ḟ (t − t1/2)

]

−c1(1 + d2d3)

c2(c2 − c1)

[
(c2 − c2

2)g(t − t1)− c2γ s(t − t1)
]

− 2c2κ

c2(c2
2 − c2

1)h

[
εc2g(t − t1)+ (c2 − c2

1)γ s(t − t1)
]

+ ε
2Ec1c2κ

c2(c2
2 − c2

1)h

[
ḟ (t − t2/2)− ḟ (t − t1/2)

]}
,

(
1

2
t1 + 1

2
t2 < t < t2),

(20c)

σ (0, t) = 1

/

{
−γ�1

c1c2

c2
− v0E(c1 + c2)

c2
(1 + d2d3)

−2(c1 + c2)
2

c2d3
(1 + d2d3)

[
g(t − t1) − 2γ s(t − t1)

]
+(1 + d2d3)

[
d1g(t − t1)− γ s(t − t1)

]

− 2κ

(c2 + c1)h

[
εg(t − t1)+ d1γ s(t − t1)

]}
, (t2 < t <

3

2
t1).

(20d)

If we neglect the coupling of the strain and temperature fields and put ε = 0, then the
relationships (20) for the contact stress take the form

σ (0, t) = −v0E

c
− �1γ

(1 + d)(1 + z0)
< 0, (0 < t < t1), (21a)

σ (0, t) = −v0E

c
− �1γ [1 + d(3 − 2z0)]

(1 + d)2(1 − z2
0)

< 0, (t1 < t <
1

2
t1 + 1

2
t2), (21b)

σ (0, t) = −v0E

c
+ �1γ [3 + d(1 + 2z0)]

(1 + d)2(1 − z2
0)

, (
1

2
t1 + 1

2
t2 < t < t2), (21c)

σ (0, t) = �1γ [3 + d + 2z0(1 + d)]
(1 + d)2(1 + z0)

> 0, (t2 < t <
3

2
t1), (21d)

where

d = κ

ha
, z0 = c

a
.

Reference to formulas (21) shows that the contact stress is governed by two terms: the first
one depending on the rod’s elastic properties is defined by the initial velocity of impact v0,
and the second one depending on the thermal properties is dictated by the temperature of the
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wall’s heating �1. Analysis of the relationships (21) shows that, prior to the instant t = t1, the
contact stress is less than zero; at the moment t = t1 (the moment of arrival of the reflected
thermal TT -wave at the place of contact) it changes abruptly remaining a negative constant
value up to the instant t = 1

2 t1 + 1
2 t2 (the moment of concurrent arrival of two reflected waves,

TE- and ET -waves, at the place of contact). In other words, prior to the moment of arrival
of the wave of off-loading at the place of contact, i.e. the elastic ET -wave reflected from the
incident thermal T -wave, both terms have the same sign, and the recoil of the rod does not
occur. The thermal wave TT arriving at the place of contact at the moment t = t1 only loads
additionally the place of contact. At the moment of concurrent arrival of two reflected waves,
TE- and ET -waves, at the place of contact, the second term in (21) changes its sign from ‘−’
to ‘+’. Since the sign of the first term in (21) remains unchanged, the rebound of the rod from
the wall can occur only at a certain magnitude of the value v0/�1, i.e. depending on what kind
of the processes predominates: thermal or elastic. Thus, when v0/cα�1 ≤ ν the rebound will
take place at the instant t = 1

2 t1 + 1
2 t2, where

ν = 3 + d(1 + 2z0)

(1 + d)2(1 − z2
0)
.

If v0/cα�1 > ν, the recoil will occur at the instant t = t2, when the reflected elastic EE-wave
of off-loading arrives at the place of contact (the off-loading EE-wave is generated from the
action of the incident elastic E-wave of loading onto the rod’s free end), and the first term in
(21) vanishes, but the second one remains positive.

Note that the coupling of strain and temperature fields is small for many materials (this is
valid for the majority of metals), and hence the dimensionless parameter ε characterizing this
coupling is a small value (for metals the value of ε has the order of 10−2, see [16]). Therefore
the conclusions made above for the behaviour of the contact stress without reference to the
coupling of strain and temperature fields, i.e. when ε = 0, remain valid for the materials
possessing small magnitudes of ε. But for other materials Equations (20) require numerical
investigation.

3.2. THE CASE t1 > t2

Now assume that t1 > t2 (see the second example in Figure 1). In this case, the formulas
(16)–(18) take the form

γ s(t) = 1

/

{
�1γ d1 + ε v0E

κ

hc1c2

}
, (0 < t < t2), (22a)



96 Yu.A. Rossikhin and M.V. Shitikova

γ s(t) = 1

/

{
�1γ d1 − ε v0E

κ

hc1c2

− 2d1κ

hc2(c
2
2 − c2

1)

[
εc2g(t − t2)+ (c2 − c2

2)γ s(t − t2)
]

−ε κ

hc1(c
2
2 − c2

1)

[
(c2 − c2

1)g(t − t2)− c2γ s(t − t2)
]

−ε 2Eκ

hc1c2(c
2
2 − c2

1)

[
(c2

2 − a2)ḟ (t − t2/2) − (c2
1 − a2)ḟ (t − t1/2)

]

− ε
2Ed1κ

h(c2
2 − c2

1)

[
ḟ (t − t2/2)− ḟ (t − t1/2)

]}
, (t2 < t <

1

2
t2 + 1

2
t1),

(22b)

g(t) = 1

/

{
�1γ − v0E(1 + d1d2)

c1 + c2

c2

}
, (0 < t < t2), (23a)

g(t) = 1

/

{
�1γ + v0E(1 + d1d2)

c1 + c2

c2

− 2κ

hc2(c
2
2 − c2

1)

[
εc2g(t − t2)+ (c2 − c2

2)γ s(t − t2)
]

+c2(1 + d1d2)

c2(c2 − c1)

[
(c2 − c2

1)g(t − t2)− c2γ s(t − t2)
]

+2E(1 + d1d2)

c2(c2 − c1)

[
(c2

2 − a2)ḟ (t − t2/2)− (c2
1 − a2)ḟ (t − t1/2)

]

− ε
2Eκ

h(c2
2 − c2

1)

[
ḟ (t − t2/2)− ḟ (t − t1/2)

]}
, (t2 < t <

1

2
t2 + 1

2
t1),

(23b)

ḟ (t) = −v0, (0 < t <
1

2
t2), (24a)

ḟ (t) = −v0 − (c2
2 − a2)g(t − t2/2)− 2c2

2γ s(t − t2/2)

E(c2 − c1)d3
, (

1

2
t2 < t <

1

2
t1). (24b)

Instead of the formulas (20) we have

σ (0, t) = −E

/

{
α�1

c1c2

c2
+ v0(c1 + c2)

c2
(1 + d2d3)

}
< 0, (0 < t < t2), (25a)
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σ (0, t) = 1

/

{
−γ�1

c1c2

c2
+ v0E(c1 + c2)

c2
(1 + d2d3)

+2E(1 + d2d3)

c2(c2 − c1)

[
(c2

2 − a2)ḟ (t − t2/2)− (c2
1 − a2)ḟ (t − t1/2)

]

+c2(1 + d2d3)

c2(c2 − c1)

[
(c2 − c2

1)g(t − t2)− c2γ s(t − t2)
]

+ 2c1κ

c2(c2
2 − c2

1)h

[
εc2g(t − t2)+ (c2 − c2

2)γ s(t − t2)
]

+ ε
2Ec1c2κ

c2(c2
2 − c2

1)h

[
ḟ (t − t2/2)− ḟ (t − t1/2)

]}
, (t2 < t <

1

2
t1 + 1

2
t2).

(25b)

If we neglect the coupling of the strain and temperature fields and put ε = 0, then the
relationships (25) for the contact stress take the form

σ (0, t) = −v0E

c
− �1γ

(1 + d)(1 + z0)
< 0, (0 < t < t2), (26a)

σ (0, t) = �1γ (1 + 2z2
0)

(1 + d)(z2
0 − 1)

> 0, (t2 < t <
1

2
t1 + 1

2
t2). (26b)

Reference to the formulas (26) shows that at t1 > t2 the duration of contact is equal
to t2, as well as for the materials possessing small magnitudes of ε, but for other materials
Equations (25) require numerical investigation.

Note that, if c2 is much larger than c1, the rebound of the rod will occur at the instant
t = t2 when the quasielastic qEqE-wave reaches the place of contact. If c1 is much larger
than c2, the rebound of the rod will occur at the moment t = t1/2 + t2/2 or t = t2 when the
quasielastic qEqT -wave or qEqE-wave reaches the place of contact, respectively, since only
the quasielastic waves have the character of the off-loading wave. If c1 → ∞, the elastic wave
will propagate along the disturbed rod, and its recoil will take place at the moment t = t2.

3.3. PARTICULAR CASES

3.3.1. Perfect thermal contact
It should be noted that, if the perfect thermal contact is established during impact of the rod
against the rigid wall, i.e. h → ∞ and hence d2 = 0 and / = d1, then the time-dependence
of the contact stress has the form:
for t1 < t2 when ε �= 0

σ (0, t) = − 1

d1

(
v0E

c1 + c2

c2
+ �1γ

c1c2

c2

)
< 0, (0 < t < t1), (27a)

σ (0, t) = 1

d2
1

{(
v0E

c1 + c2

c2
+�1γ

c1c2

c2

)[
c1

c2 − c1
− d1 + 2c2

1(c
2
1 − a2)

c2d3(c2 − c1)2

]

+
(
�1γ − v0E

c1 + c2

c2

)[
c1c

2
2

c2(c2 − c1)
+ 2a2(c2

1 − a2)

c2d3(c2 − c1)
2

]

+ 2c1d1(c
2
1 − a2)

c2d3(c2 − c1)
2
�1γ

}
, (t1 < t <

1

2
t1 + 1

2
t2).

(27b)
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σ (0, t) = 1

d2
1

{(
v0E

c1 + c2

c2
+�1γ

c1c2

c2

)(
c1

c2 − c1
− d1

)

+
(
�1γ − v0E

c1 + c2

c2

)[
c1c

2
2

c2(c2 − c1)
+ 2(2c2

2 − c2
1 − a2)(c2

1 − a2)

c2d3(c2 − c1)2

]

− 4d1[c2
1(c

2
2 − c2

1) + c2
2(c

2
1 − a2)]

c2d3(c2 − c1)2
�1γ

}
, (

1

2
t1 + 1

2
t2 < t < t2),

(27c)

σ (0, t) = 1

d1

{
�1γ

[
2(c1 + c2)

2(2d1 − 1)

c2d1d3
− c1c2

c2

]
− 2εv0E

c1c2(c1 + c2)

c4d1d3

}

(t2 < t <
3

2
t1),

(27d)

and for the case ε = 0

σ (0, t) = −v0E

c
− �1γ

1 + z0
< 0, (0 < t < t1), (28a)

σ (0, t) = −v0E

c
− �1γ

1 − z2
0

< 0, (t1 < t <
1

2
t1 + 1

2
t2), (28b)

σ (0, t) = −v0E

c
+ 3�1γ

1 − z2
0

, (
1

2
t1 + 1

2
t2 < t < t2) (28c)

σ (0, t) = �1γ (3 + 2z0)

1 + z0
> 0, (t ≥ t2) (28d)

for t1 > t2 when ε �= 0

σ (0, t) = − 1

d1

(
v0E

c1 + c2

c2
+ �1γ

c1c2

c2

)
< 0, (0 < t < t2), (29a)

σ (0, t) = 1

d2
1

{
v0E

c1 + c2

c2

[
c2(c

2
1 − c2)

c2(c2 − c1)
− d1 + 2(c2

2 − a2)2

c2d3(c2 − c1)2

]

+ �1γ

[
2(c2

2 − a2)(2d1c
2
2 − c2

2 + a2)

c2d3(c2 − c1)2
− c1c2

c2

(
d1 + c1 + c2

c2 − c1

)]}
,

(t2 < t <
1

2
t2 + 1

2
t1)

(29b)

and for the case ε = 0

σ (0, t) = −v0E

c
− �1γ

1 + z0
< 0, (0 < t < t2), (30a)

σ (0, t) = �1γ (1 + 2z2
0)

z2
0 − 1

> 0, (t ≥ t2). (30b)
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3.3.2. The case of thermally isolated rod’s cross-section being in contact with a wall
If the rod’s cross-section, which is in contact with the wall, is thermally insulated, i.e. h → 0
and hence d2 → ∞ and //d2 = ε + d2

1 , then the time-dependence of the contact stress has
the form:
for t1 < t2 when ε �= 0

σ (0, t) = −v0E
c1 + c2

c2

d3

ε + d2
1

< 0, (0 < t < t1), (31a)

σ (0, t) = v0E

(ε + d2
1 )

2

c1 + c2

c2

{
d1d3

[
c1(c

2 − c2
2)

c2(c2 − c1)
− d1

]

+ ε

[
d3(2c1 − c2)

c2 − c1
+ 2a2(c2 + c1)

c2
+ 2a2[d1(c

2
1 − a2)+ 2εc2

1]
c2d3(c2 − c1)2

]}
,

(t1 < t <
1

2
t1 + 1

2
t2),

(31b)

σ (0, t) = v0E

(ε + d2
1 )

2

c1 + c2

c2

{
−d3(ε + d2

1 ) + c1d3(d3c
2 − d1c

2
2)

c2(c2 − c1)

−2(d3c
2
1 − d1a

2)(d3 + ε)(c1 + c2)

c2d3(c2 − c1)
+ ε

2c1c
2
2[c2(d1 + 1) − c2

1]
c4(c2 − c1)

− 2(d3c
2
2 − d1a

2)[d1(c
2
1 − a2)+ 2εc2

1]
c2d3(c2 − c1)2

}
, (

1

2
t1 + 1

2
t2 < t < t2),

(31c)

σ (0, t) = 2v0E

(ε + d2
1 )

c1 + c2

c2

[
−d3 + (c1 + c2)

2(d3 + ε)

c2(d2
1 + ε)

]
, (t2 < t <

3

2
t1) (31d)

and for the case ε = 0

σ (0, t) = −v0E

c
< 0, (0 < t < t2), (32a)

σ (0, t) = 0, (t ≥ t2) (32b)

for t1 > t2 at ε �= 0

σ (0, t) = −v0E
c1 + c2

c2

d3

ε + d2
1

< 0, (0 < t < t2), (33a)

σ (0, t) = v0E

(ε + d2
1 )

2

c1 + c2

c2

{
−d3(ε + d2

1 ) − c2d3(d3c
2 − d1c

2
1)

c2(c2 − c1)

+2[(d3 + ε)c2
2 − d1a

2][d3c
2
2 + a2(ε − d1)]

c2d3(c2 − c1)2

− ε
2a2(c1 + c2)

c2(c2 − c1)

}
, (t2 < t <

1

2
t2 + 1

2
t1)

(33b)
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Figure 2. The z0-dependence of the value ν at d = 0·5.

and for the case ε = 0 Equations (33) go over into Equations (32).

3.3.3. The impact of an elastic rod
In order to obtain the known solution of the problem of impact of an elastic rod against a rigid
barrier [17, Chapter 3], it is necessary to ignore thermal processes occurring in the rod, i.e. to
put α = 0 in the solution found above. Then only the first term remains in the relationship for
u(x, t) and the time-dependence of the contact stress has the form

σ (0, t) = −v0E

c
, (0 < t < t2), (34a)

σ (0, t) = 0, (t ≥ t2). (34b)

4. Numerical results

Numerical investigations are centred on the analysis of the contact stress. For this purpose we
introduce the following dimensionless values:

σ ∗(0, t∗) = σ (0, t)

E
, v∗

0 = v0

c2
, �∗

1 = α�1, z = t1

t2
= c2

c1
, t∗ = t

t2
.

Figure 2 shows the z0-dependence of the value ν at d = 0·5. From Figure 2 it is seen that
the function ν(z0) tends monotonically to infinity as z0 → 1.

The t∗-dependence of the contact stress σ ∗/�∗
1 is presented in Figures 3a and 3b for

z = 0·6 and z = 1·4, respectively, at v∗
0/�

∗
1 = 1 and d = 0·5. Reference to Figures 3

shows that taking account of coupling the temperature and strain fields (ε �= 0) results in an
increase of the contact-stress magnitude as compared with the case of the uncoupled problem
of thermoelasticity (ε = 0). It should be noted also that the contact stress, as in the elastic
case, remains unchanged during the time instants between arrivals of the reflected waves at
the place of contact, i.e. the contact stress does not relax as time goes on.

Figure 4 shows the duration of contact t∗cont as a function of the value v∗
0/�

∗
1 at z = 0·6, 0·7

and 0·8. From Figure 4 it is seen that, during the transition through v∗
0/�

∗
1 = ν, the duration

of contact changes abruptly and that the inclusion of heat exchange between the rod and the
wall leads to the decrease in the duration of contact under certain magnitudes of v∗

0/�
∗
1. The

value v∗
0/�

∗
1 by itself increases monotonically as z increases.



Impact of a Thermoelastic Rod 101

Figure 3. The t∗-dependence of the contact stress σ ∗/�∗
1 for (a) z = 0·6 and (b) z = 1·4 at v∗

0/�
∗
1 = 1, ε = 0·03,

and d = 0·5.

Figure 4. The v∗
0/�

∗
1-dependence of the duration of contact t∗cont.
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5. Conclusions

From the above discussion the following conclusions can be drawn:
(1) The problem of the impact of a thermoelastic rod against a rigid heated barrier with due

account for heat exchange between the rod and the wall has been analytically solved exactly
for the first time.

(2) The influence of the coupling of the strain and temperature fields on the time-dependence
of the contact stress has been analyzed: the fields’ coupling results in an increase in the contact
stress.

(3) Since the contact stress is the sum of two terms, one of which is determined by the
mechanical excitation and depends upon the initial velocity of impact, and the other term is
governed by the thermal excitation and depends upon heating temperature of the wall, the
duration of contact between the rod and the wall may vary depending on the magnitudes of
these two terms.

Appendix A. Fourier series for the generalized functions

4

π

∞∑
n=1

cos(2n− 1)
πt

ti
= ti

π
δ(t)+ 2ti

π

∞∑
n=1

(−1)nδ(t − nti), (A1)

− 4

π

∞∑
n=1

(−1)n−1 sin(2n− 1)
πt

ti
= 2ti

π

∞∑
n=1

(−1)nδ

[
t −

(
n− 1

2

)
ti

]
, (A2)

− 4

π

∞∑
n=1

(2n− 1) sin(2n− 1)
πt

ti
=

(
ti

π

)2

δ′(t)+ 2

(
ti

π

)2 ∞∑
n=1

(−1)nδ′(t − nti), (A3)

− 4

π

∞∑
n=1

(−1)n−1(2n − 1) cos(2n− 1)
πt

ti
= 2

(
ti

π

)2 ∞∑
n=1

(−1)nδ′
[
t −

(
n− 1

2

)
ti

]
,

(A4)

4

π

∞∑
n=1

(−1)n−1 cos[(2n− 1)πtt−1
i ]

2n− 1
=

{
1, 0 < t < 1

2 ti

−1, 1
2 ti < t < 3

2 ti
, (A5)

4

π

∞∑
n=1

sin[(2n − 1)πtt−1
i ]

2n− 1
=

{
1, 0 < t < ti

−1, ti < t < 2ti
, (A6)

where δ(x) is the Dirac δ-function, and ti = 2l/ci (i = 1, 2).
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